

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	Ockle 0.5.0 documentation

Welcome to Ockle’s documentation!

[image: Ockle]
Ockle is a tool which lets you control a group of power distribution units (PDUs [https://en.wikipedia.org/wiki/Power_distribution_unit]) and the servers which connected to them.
Servers can be dependent on each other, and Ockle can then determine which servers should be turned on according to those dependencies. After server is turned on Ockle can run automated tests to make sure they indeed provide the services that are required by the servers.

Design principles in Ockle

	Extensibility – I tried to implement the method “everything is a plugin”, by this I mean that every new form of logic or functionally could be added and removed from the configuration without changing the code itself. Every new feature would go in to its own module and process thread.

	Lightweight – Ockle is split to a control daemon and a webserver, so the device controlling the servers could be put on a embedded device on a separate power supply.

	Easy to use – The webserver aims to give an intuitive user experience, with helpful information about the server’s health and power usage status.

Where to get Ockle

Ockle is available at GitHub [https://github.com/guysoft/Ockle].

You can download it by cloning it:

git clone https://github.com/guysoft/Ockle.git

Ockle is Free Software

This software is distributed under the GNU General Public License, version 2 [https://www.gnu.org/licenses/gpl-2.0.html]

User Manual

	Installing Ockle
	Set up the python environment

	Installing Ockle’s GUI

	How to set up

	How to run

	Using Ockle
	Running Ockle for the first time

	Plugins List
	Plugins

Developer Manual

	Ockle’s Core functions
	MainDaemon.py

	Ockle’s Network Tree Data Structure
	The Whole Network Tree

	A Server Node Within the Network

	Related Topics
	Sever Network Generator

	Operation States (OpStates)

	Communication Handler
	Communication Handler Class

	Ockle’s Diagram

	Plugins
	Plugin Framework Diagram

	The Template plugin Class
	Example

	Plugin ini template files
	Example

	Webserver - Ockle’s GUI
	Helper fuctions for generating multi-choice config pages

	The Communication Client
	Example usage

	Server Objects and Object Generators
	Power distribution units (PDUs) - Outlets
	Coding a new PDU type
	Example Dummy Outlet

	Example for an outlet INI Template File

	Controllers - Controls
	Coding a New Controller Type
	Example Dummy Control

	Example for a control INI Template File

	Testers - Tests
	Coding a New Tester Type
	Example Dummy Tester

	Example for a control INI Template File

	Object Generators common tools
	INI Template files

	INI Template file format
	Available settings data types

Libraries used (learned?)

	pyGraph [http://pygraphlib.sourceforge.net] – python graph data structure

	PyDot [https://code.google.com/p/pydot] library / xDot format

	SQLAlchemy [http://www.sqlalchemy.org] – cross-platform databas

	Pyramid [http://www.pylonsproject.org/] – Webserver framework

	Chameleon [http://chameleon.repoze.org/] template engine

	Graphviz [http://www.graphviz.org/] / Canviz [https://code.google.com/p/canviz/] – Graph visualization libraries

	JqPlot [http://www.jqplot.com] - a plotting and charting plugin for the jQuery Javascript framework

	PySNMP [http://sourceforge.net/projects/pysnmp] – Communication with the Raritan Dominion PX Remote Power Control

	straight.plugin [https://github.com/ironfroggy/straight.plugin] – A plugin loading facility

	Socket [http://docs.python.org/library/socket.html] (python standard library class) - Low-level networking interface

	prototype.js [http://prototypejs.org] - The main page requires prototype for Canvoiz to work

	sphinx [http://sphinx.pocoo.org] - Documentation

Project

	Future Work

Indices and tables

	Index

	Module Index

	Search Page

 Copyright 2012, Guy Sheffer.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 	latest

 Installing Ockle

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Ockle 0.5.0 documentation

Installing Ockle

Note

It is recommended to run Ockle in a virtualenv. This is so upgrades of your system won’t break any control over your servers. So first make sure you have it.

	Installing virtualenv:

apt-get install python-virtualenv

Set up the python environment

	In order to compile some of the python modules you will need to install the following packages (or your distro’s equivalent)

apt-get install libxslt1-dev libxml2-dev libgraphviz-dev

	Run the following commands to get a python environment with the correct modules and version.

Note

you can change ~/pythonenv to any path that suits you

python2.7 /usr/bin/virtualenv ~/pythonenv
~/pythonenv/bin/easy_install pyramid==1.2.7
mkdir ~/pythonenv/downloads/
cd ~/pythonenv/downloads/
svn checkout http://networkx.lanl.gov/svn/pygraphviz/trunk pygraphviz
~/pythonenv/bin/easy_install waitress
~/pythonenv/bin/easy_install WebError
~/pythonenv/bin/easy_install pyramid-handlers
~/pythonenv/bin/easy_install pyramid-beaker
~/pythonenv/bin/easy_install pyramid_debugtoolbar
~/pythonenv/bin/easy_install psycopg2
~/pythonenv/bin/easy_install pycrypto
~/pythonenv/bin/easy_install SQLAlchemy
~/pythonenv/bin/easy_install lxml
~/pythonenv/bin/easy_install paramiko

	Edit the setup.py file ~/pythonenv/downloads/pygraphviz/setup.py

and add/replace the following lines:

library_path='/usr/lib/graphviz/'
include_path='/usr/include/graphviz/'

Then run:
.. code-block:: bash

~/pythonenv/bin/python setup.py install

Installing Ockle’s GUI

Ockle’s web-based GUI uses Pyramid [http://www.pylonsproject.org/projects/pyramid/], a python-based web development framework.
You can either deploy the pyramid app on a apache/nginx webserver, or you can run it on a standalone webserver.
To run it on a standalone webserer you can run the supplied script:

~/pythonenv/bin/python src/webserer/application.py

Note

Currently if the GUI can’t communicate with Ockle an error message is displayed. If this happens to you follow your server’s error log to see why the communication has failed.

Note

The standalone webserver loads by default on port 8000 [http://localhost:8000] .

How to set up

	Copy config.ini.example to config.ini

Once the file is copied Ockle should be able to run. You can tweak the config.ini file manually or use the webserver GUI which should.

How to run

To run the Ockle simply exacute:

~/pythonenv/bin/python src/MainDaemon.py

 Copyright 2012, Guy Sheffer.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 	latest

 Using Ockle

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Ockle 0.5.0 documentation

Using Ockle

Running Ockle for the first time

To run the Ockle simply exacute:

~/pythonenv/bin/python src/MainDaemon.py

Then you can run the GUI:

~/pythonenv/bin/python src/webserer/application.py

Once you have done that you can enter the webserver via port 8000 [http://localhost:8000] .
You should see the following page:

[image: How ockle should look after being installed]
This it not much, since there are no servers configured yet. You will need to enter the ‘configuration’ section at the top of the page and add servers to the server network.

 Copyright 2012, Guy Sheffer.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 	latest

 Plugins List

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Ockle 0.5.0 documentation

Plugins List

One of Ockle’s main features is that its completely plugin-driven. So functionality can be switch on or off by enabling and disabling plugins.

Disabling plugins can be done in etc/config.ini in the [plugins] section under plugins, or via the GUI in the general section of the configuration tab.

Plugins

	AutoControl - When enabled gives automatic commands requiring switching the whole network.

	CoreCommunicationCommands - This plugin gives basic communication commands such as listing the existing servers, their states etc.

	EditingCommunicationCommands - When enabled modifying INI files is possible via remote clients.

	Logger - This plugin logs periodically data from the outlets and controllers in all servers.

	SocketListener - This plugin enables sending commands to Ockle via server sockets.

 Copyright 2012, Guy Sheffer.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 	latest

 Ockle’s Core functions

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Ockle 0.5.0 documentation

Ockle’s Core functions

These are objects that are in the core of Ockle

	MainDaemon.py

	Ockle’s Network Tree Data Structure
	The Whole Network Tree

	A Server Node Within the Network

	Related Topics
	Sever Network Generator

	Operation States (OpStates)
	Server/Outlet/control OpStates

	Test OpStates

	Communication Handler
	Communication Handler Class

Ockle’s Diagram

[image: Ockle's framework and how it interacts with the webserver]

 Copyright 2012, Guy Sheffer.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 	latest

 MainDaemon.py

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Ockle 0.5.0 documentation

 	Ockle’s Core functions

MainDaemon.py

	
class MainDaemon.MainDaemon[source]

	The Main Daemon runs the Ockle Core, and controls the Server network,
It loads the plugins which decide what the network behavior should be

	
getAvailablePluginsListIndex(dict={})[source]

	Get an Index of available plugins
@return: a dict with available plugins with their name as the index, and the description as their value

	
getPluginList()[source]

	Get a list of all class plugins
@return: a list of all class plugins

	
reload(dataDict)[source]

	A general function to reload everything

	
shutdown()[source]

	Shutdown Ockle

 Copyright 2012, Guy Sheffer.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 	latest

 Ockle’s Network Tree Data Structure

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Ockle 0.5.0 documentation

 	Ockle’s Core functions

Ockle’s Network Tree Data Structure

The Whole Network Tree

Ockle’s main data structure is a acyclic graph implemented by pygraph [http://pygraphlib.sourceforge.net/doc/public/pygraphlib.pygraph.DGraph-class.html], that lives in an instance of networkTree/ServerNetwork.py . This graph holds ServerNodes instances, each one represents a server.

You can build a server network from Ockle’s ini files using the Sever Network Generator

	
class networkTree.ServerNetwork.ServerNetwork[source]

	The class that handles the graph server network

	
addDependency(server, dependency)[source]

	Add a dependency to a server

	Parameters:	
	server – the name of the server

	dependency – the name of the server the former is dependent on

	Raises DependencyException:

		Will raise an exception if there was a cycle in the server network

	
addServer(node, dependencies=[])[source]

	Add a server to the network

	Parameters:	
	node – a server in the network

	dependencies – list of the server names this sever is dependent on

	
allOff()[source]

	Turn all servers off ungracefully

	
getDependencies(server)[source]

	Get a list of servers a given server is dependent on (only one level)

	Parameters:	server – the server name

	
getDependent(server)[source]

	Get a list of servers that are dependent on this server

	Parameters:	server – the server name

	
getRoot()[source]

	Gets the root server of the tree

	Returns:	the root server

	
getServer(serverNameSearch)[source]

	Get a server by name

	Parameters:	serverNameSearch – The server to search for

	Returns:	The server class, None if not found

	
getServernode(serverName)[source]

	Get a server node by name

	Parameters:	serverName – The name of the server node

	Returns:	The server node

	
getSortedNodeList()[source]

	returns a list of the nodes topologically sorted

	Returns:	a list of the nodes topologically sorted

	
getSortedNodeListIndex()[source]

	returns a list of the node names topologically sorted

	Returns:	a list of the node names topologically sorted

	
isAllOpState(opState)[source]

	Check if all servers are ok

	Returns:	True if all servers are on

	
isReadyToTurnOn(server)[source]

	Is a server ready to be turned on?

	Returns:	True if the server is ready to be turned on

	
removeDependency(server, dependency)[source]

	Remove a dependency from a server

	Parameters:	
	server – the name of the server

	dependency – the name of the server the former is dependent on

	
turnOffServer(serverName)[source]

	Turn a server off by name

	Parameters:	serverName – The server name

	
turnOnServer(serverName)[source]

	Turn a server on by name

	Parameters:	serverName – The server name

	
turningOn()[source]

	

	Returns:	true if we have any servers that are in intermediate states

	
updateNetwork()[source]

	Updates the opstate of all the nodes and their outlets/tests and controllers

A Server Node Within the Network

The Server Node object holds the global operation state of the server, and methods to control the server as a whole. Server objects are also stored in this instance.
Currently server objects are: Outlets, Controls and Tests.

	
class networkTree.ServerNode.ServerNode(name, outlets=[], tests=[], controls=[])[source]

	This class represents a PC in the network

	
action(actionString, ignoreDeps=False)[source]

	Execute an on/off action on the server

	Parameters:	
	actionString – Either “on” or “off”

	ignoreDeps – True if you want to ignore other server dependencies

	
controlsStillStarting()[source]

	Return true if any control is still on SwitcingOn OpState

	
getControlsDataDict()[source]

	Get the data dict of all the controls

	Returns:	the controls data dict

	
getFailedTests()[source]

	return a list of failed tests

	
getNotControlsOpState(opState)[source]

	Returns controls that don’t have a given opState

	Parameters:	opState –

	Returns:	controls that don’t have a given state

	
getNotOutletsOpState(opState)[source]

	Returns outlets that don’t have a given opState

	Parameters:	opState –

	Returns:	outlets that don’t have a given state

	
getOutlet(number)[source]

	Get an outlet from the outlet list

:param number outlet number in the list
:return: an outlet type that is in the given place

	
getOutlets()[source]

	Get a list of outlet numbers
@return: a list of outlets

	
getOutletsDataDict()[source]

	Returns a dict that holds all the outlets and their data dict.
This gets sent to the logger

	Returns:	A dict with each outlet name, and a dict of its data

	
getShutdownAttempts()[source]

	Get number of shutdown attempts

	Returns:	Number of shutdown attempts

	
getStartAttempts()[source]

	Get number of startup attempts

	Returns:	Number of startup attempts

	
incrementShutdownAttempt()[source]

	Increment the stop attempt counter

	Returns:	Number of shutdown attempts

	
incrementStartAttempt()[source]

	Increment the startup attempt counter

	Returns:	Number of startup attempts

	
outletsStillStarting()[source]

	Return true if any outlet is still on SwitcingOn OpState

	
setControlOpState(opState)[source]

	Set all the controls to a given opState

	Parameters:	opState – The opState to set the control to

	
setName(name)[source]

	Set the name of the Server
:param name: The name ot be set

	
setOpState(state)[source]

	Set the operating state of the server

	
setOutletsOpState(opState)[source]

	Set all the outlets to a given opState

	Parameters:	opState – The opState to set the outlets to

	
setOutletsState(state)[source]

	Sets the outlets all to a given state by force

	Parameters:	state – set the outlets to state (boolean)

	Returns:	A list of outlets the failed (note: you can check with “if not” to see if there was no failure

	
setState(state)[source]

	Set server state

	Parameters:	state – server state type

	
turnOn(ignoreDeps=False)[source]

	Turn on the server outlets, and check if all services are in order

	Parameters:	ignoreDeps – True if you want to ignore other server dependencies

	
updateOpState(runTests=True)[source]

	Update all the OpStates and run all tests of the server

Related Topics

	Sever Network Generator

	Operation States (OpStates)
	Server/Outlet/control OpStates

	Test OpStates

 Copyright 2012, Guy Sheffer.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 	latest

 Sever Network Generator

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Ockle 0.5.0 documentation

 	Ockle’s Core functions

 	Ockle’s Network Tree Data Structure

Sever Network Generator

Using this class you can build a server network object from a collection of INI files in the etc folder.

	
class networkTree.ServerNetworkFactory.ServerNetworkFactory(MainDaemon, reportDependencyexceptions=True)[source]

	A class to take the config file folder and turn it in to a server network

	Parameters:	MainDaemon – the MainDaemon.py singletron, only used for debug output

	
getControllersDictIndex()[source]

	Get the index of available controller types

	Returns:	A list of strings of controller type names

	
getOutletsDictIndex()[source]

	Get the index of available PDU types

	Returns:	A list of strings of PDU type names

	
getTestersDictIndex()[source]

	Get the index of available testers types

	Returns:	A list of strings of tester type names

 Copyright 2012, Guy Sheffer.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 	latest

 Operation States (OpStates)

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Ockle 0.5.0 documentation

 	Ockle’s Core functions

 	Ockle’s Network Tree Data Structure

Operation States (OpStates)

All objects in Ockle’s Network Tree Data Structure keep Operation States of their objects they represent. By tracking the states its easy to find out what component is faulty in the server network.

Server/Outlet/control OpStates

	
class common.common.OpState[source]

	Operation state enum, that all other operation states enums extend

	
common.OpState = <class common.common.OpState at 0x2a5eae0>

	

	
OFF = 'OFF'

	Outlet/Control/server are off

	
OK = 'OK'

	Outlet/Control/server are on and running

	
SwitchingOff = 'Switching off'

	Outlet/Control/server is switching off

	
SwitcingOn = 'Switching on'

	Outlet/Control/server is switching on

	
failedToStart = 'Failed to start'

	Outlet/Control/server failed to start

	
failedToStop = 'Failed to stop'

	Outlet/Control/server failed to stop

	
forcedOff = 'Forced off'

	Outlet/Control/server if forced off

	
forcedOn = 'Forced on'

	Outlet/Control/server if forced on

	
permanentlyFailedToStart = 'Permanently failed to start'

	Outlet/Control/server has permanently failed to start

	
permanentlyFailedToStop = 'Permanently failed to Stop'

	Outlet/Control/server has permanently failed to stop

Test OpStates

	
class testers.TemplateTester.TesterOpState[source]

	
	
TemplateTester.TesterOpState = <class testers.TemplateTester.TesterOpState at 0x2d5d390>

	

	
FAILED = 'FAILED'

	Test has failed

	
SUCCEEDED = 'SUCCEEDED'

	Test has succeeded

 Copyright 2012, Guy Sheffer.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 	latest

 Communication Handler

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Ockle 0.5.0 documentation

 	Ockle’s Core functions

Communication Handler

The communication handler is a class that stores all the commands Ockle can handle from an external client. There is one instance of this class on the whole program and it is used to add new commands all over Ockle (both core and plugins).

A communication plugin (such as the SocketListner plugin) is then used to handle an incoming command.

A command consists of a command name and a data dict. A reply is either the same command with a dataDict holding the reply, or a command with the name “Unknown Command” if the communication Handler does not recognize the request.

The class that builds a message to be sent over a communication plugin is the Message class, located in CommunicationMessage module. It should not really be used directly since only the communication handler and a single function in The Communication Client.

Communication Handler Class

	
class common.CommunicationHandler.CommunicationHandler(mainDaemon)[source]

	Handle communication massages from a listener plugin

	
AddCommandToList(command, function)[source]

	Used by plugins to add an ability to handle a message in the CommunicationHandler

	Parameters:	
	command – The command to be called

	function – a callback to a function that receives a dict of the data to process

	
handleMessage(message)[source]

	Receives a message class type, and returns the appropriate response

	Parameters:	message – The message class we received

	Returns:	A message class response

	
listCommands(dataDict)[source]

	A command to list all available commands on the communication server

	Parameters:	dataDict – a dict of strings with the information passed to the handling method

	Returns:	the response from the handling method

 Copyright 2012, Guy Sheffer.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 	latest

 Plugins

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Ockle 0.5.0 documentation

Plugins

Note

One of the main concept of Ockle’s design is that everything that could be a plugin, should be.

Ockle allows to add major features by the use of plugins. Each plugin is python class instance that gets executed in its own thread, allowing the developer to add new logic and behavior. You should be able to write a plugin without modifying Ockle’s core. But should be able to access any method within it.
Many core functions in Ockle are plugins themselves including the Automatic server control and the communication to the web-based GUI.

In order to write a plugin, you should know that there are many pre-built tools that would help you in building one. Including a way to place your configuration variables in the GUI via simple Plugin ini template files

A general description of the tools available for the plugin would look like this:

Plugin Framework Diagram

[image: What a plugin 'sees']
Every plugin is supplied with a pointer to the Main Daemon singletron, allowing access to services such as the server tree data-structure (to change the state of the servers) and the communication handler (which lets you add more commands to the communication with the webserver or any other external client).
The plugin also gets access to all the functions defined in the plugin template class, such as special functions that arrange the configuration variable storage.

The Template plugin Class

To use this plugin framework simple extend the plugins.ModuleTemplate.ModuleTemplate .
You may either extend the __init__ function to do things with Ockle starts, or the run method that will run your code in a seprate thread with access to Ockle’s functionality. You can also use the __init__ function to register new commends to send to Ockle as done in plugins.CoreCommunicationCommands.CoreCommunicationCommands.

	
class plugins.ModuleTemplate.ModuleTemplate(MainDaemon)[source]

	The basic plugin that that all other plugins must extend

	
debug(message)[source]

	Debug message for a module

	Parameters:	message – debug message

	
getConfigInt(value)[source]

	Get a value from the config ini for a plugin

	Parameters:	value – The value you want to load

	Returns:	the value from config.ini

	
getConfigVar(value)[source]

	Get a value from the config ini for a plugin

:param value - the value you want
:return: the value from config.ini

	
run()[source]

	To be implamented by the plugin,
The main thread of the damon, this function runs in its own thread

	
stop()[source]

	Called to request the thread to terminate

Example

Here is a simple plugin example, this plugin simply sends to debug “I am a test plugin” message every X seconds, as defined in its config var.

Plugin ini template files

If you want the configuration variable to be changeable at the webserver GUI, you must provide a template ini file in the src/config/plugins folder. The files should have the name of the plugin class proceeded with the .ini ending.

The section should be named plugins.<plugin name> .

These template files follow Ockle’s INI Template file format .

Example

Lets look at our TimerPluginExample example from before. We will need it to have a src/config/plugins/TimerPluginExample.ini. This file should contain the following text:

With those two files in place Ockle takes it from here and the plugin would be available to the user in the config sections.

 Copyright 2012, Guy Sheffer.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 	latest

 Webserver - Ockle’s GUI

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Ockle 0.5.0 documentation

Webserver - Ockle’s GUI

Ockle’s GUI is a pyramid 1.2 [http://docs.pylonsproject.org/projects/pyramid/en/1.2-branch/index.html/] application that communicates to the Ockle Daemon.

There are a few helper functions for the view’s page

Helper fuctions for generating multi-choice config pages

When creating config pages with multi choice fields, you must populate the multiListChoices variable and pass it to the template, this can be done using the views.multiChoiceGenerators module:

Ockle PDU and servers manager
Helper functions for creating multi-choice fields that can then be displayed by the GUI

Created on Oct 27, 2012

@author: Guy Sheffer <guy.sheffer at mail.huji.ac.il>

	
views.multiChoiceGenerators._makeMultichoice(section, option, multiListChoicesCallback, INIFileDict, multiListChoices=None)[source]

	Generate a multilist format for a template. So it can be rendered on a template

	Parameters:	
	section – The option section in the ini file

	option – The name of the option in the ini file

	multiListChoicesCallback – a callback function the returns a dict of the available options

	INIFileDict – An INI file dict that holds the list of selected choices

	multiListChoices – If there is a multiListChoices dict you want to append the existing configuration to

	Returns:	a multiListChoices dict ready to be rendred in a template

	
views.multiChoiceGenerators._makeSelectMulitChoice(existingType, objectType, item, getObjectDict, multiListChoices=None)[source]

	Make a multi select option for the select type

	Parameters:	
	existingType – The selected option

	objectType – The section to build

	item – The item to build

	getObjectCallback – the Dict holding the select list

	multiListChoices – an existing multiListChoices dict (optional)

	Returns:	The updated multiListChoices dict

 Copyright 2012, Guy Sheffer.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 	latest

 The Communication Client

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Ockle 0.5.0 documentation

The Communication Client

The communication is a python library that lets you send commands to Ockle from a python shell using an external program.

Ockle PDU and servers manager
Client calls to the Ockle server

Created on Apr 25, 2012

@author: Guy Sheffer <guy.sheffer at mail.huji.ac.il>

	
ockle_client.ClientCalls.deleteINIFile(iniPath)[source]

	Delete an INI file from Ockle’s configuration

	Parameters:	iniPath – the path of the ini file starting from the ‘etc’ folder

	Returns:	A response from Ockle

	
ockle_client.ClientCalls.deleteINISection(section, iniPath)[source]

	Delete a section from an INI file in Ockle’s configuration

	Parameters:	
	iniPath – the path of the ini file starting from the ‘etc’ folder

	section – the section to be deleted

	Returns:	A response from Ockle

	
ockle_client.ClientCalls.getAutoControlStatus()[source]

	Get the status of the Auto Control plugin

	Returns:	A dict with a key ‘status’ holding the status of Auto Control

	
ockle_client.ClientCalls.getAvailableControllersList()[source]

	Get the currently available controller types list

	Returns:	a sorted dict of controllers, the key is the name of the controller, and extra information is within the dict’s value

	
ockle_client.ClientCalls.getAvailablePDUsList()[source]

	Get the currently available PDU types list

	Returns:	a sorted dict of PDUs, the key is the name of the PDU, and extra information is within the dict’s value

	
ockle_client.ClientCalls.getAvailablePluginsList()[source]

	Get the list of available plugins

	Returns:	a dict with the plugin names as keys and the description as the value

	
ockle_client.ClientCalls.getAvailableServerControls(server)[source]

	Get the currently configured controls of a given server

	Returns:	a sorted dict of controls, the key is the name of the test, and extra information is within the dict’s value

	
ockle_client.ClientCalls.getAvailableServerOutlets(server)[source]

	Get the currently configured servers list

	Returns:	a sorted dict of servers, the key is the name of the server, and extra information is within the dict’s value

	
ockle_client.ClientCalls.getAvailableServerTesters(server)[source]

	Get the currently configured tests of a given server

	Returns:	a sorted dict of tests, the key is the name of the test, and extra information is within the dict’s value

	
ockle_client.ClientCalls.getAvailableTestersList()[source]

	Get the currently available testers type list

	Returns:	a sorted dict of testers, the key is the name of the tester, and extra information is within the dict’s value

	
ockle_client.ClientCalls.getControllerDict()[source]

	Get a dict of the current controllers that are configured

	Returns:	A dict of controllers with the key as their name and the value as their description

	
ockle_client.ClientCalls.getControllerFolder()[source]

	Get the configuration folder of all controllers

	Returns:	A string of the folder name

	
ockle_client.ClientCalls.getDataFromServer(command, paramsDict={}, noReturn=False)[source]

	Send a command to the Ockle server, and return the responce dict

	Parameters:	
	command – The command to send

	paramsDict – the dictionary that is sent with command arguments

	noReturn – Should we not expect a reply. Used in cases were we want to restart the Ockle server

	Returns:	A dict with the response data, None if we failed to connect

	
ockle_client.ClientCalls.getINIFile(iniPath)[source]

	Get an INI file from Ockle’s configuration

	Parameters:	iniPath – the path of the ini file starting from the ‘etc’ folder

	Returns:	A string with the ini file contents

	
ockle_client.ClientCalls.getPDUDict()[source]

	Get a dict of the current PDUs that are configured

	Returns:	A dict of PDUs with the key as their name and the value as their description

	
ockle_client.ClientCalls.getPDUFolder()[source]

	Get the configuration folder of all PDUs

	Returns:	A string of the folder name

	
ockle_client.ClientCalls.getServerAvilableDependencies(server)[source]

	Get a dict of the available dependencies that can be created for a server

	Parameters:	server – the server that is going to have the new dependency

	Returns:	A dict of servers and their description

	
ockle_client.ClientCalls.getServerDict()[source]

	Get a dict of the current servers that are configured

	Returns:	A dict of servers with the key as their name and the value as their description

	
ockle_client.ClientCalls.getServerFolder()[source]

	Get the configuration folder of all servers

	Returns:	A string of the folder name

	
ockle_client.ClientCalls.getServerTree()[source]

	Get a server tree status from the Ockle server, and return a dict ready
to be parsed by a pyramid view

	Returns:	a string with the dot graph

	
ockle_client.ClientCalls.getServerView(serverName)[source]

	Get information of the server

	Parameters:	serverName – the server’s name

	Returns:	a dict of string of the server’s info

	
ockle_client.ClientCalls.getTesterDict()[source]

	Get a dict of the current testers that are configured

	Returns:	A dict of testers with the key as their name and the value as their description

	
ockle_client.ClientCalls.getTesterFolder()[source]

	Get the configuration folder of all testers

	Returns:	A string of the folder name

	
ockle_client.ClientCalls.listCommands()[source]

	A command to list all available commands on the communication server

	Returns:	A dict with the command names as the key and a description if available as their value

	
ockle_client.ClientCalls.loadINIFileConfig(configPath)[source]

	Get the config on an ini file
@param configPath: the path to the config relative to etc
@return: a dict of the config

	
ockle_client.ClientCalls.loadINIFileTemplate(templatePaths)[source]

	Load an INI file and template data so it would display correctly.
Is called with loadINIFileConfig(configPath)

	Parameters:	templatesPaths – A path, or list of paths relative to ‘src/config’

	Returns:	A dicts of the template

	
ockle_client.ClientCalls.restartOckle()[source]

	Restart Ockle

	
ockle_client.ClientCalls.runTest(dataDict)[source]

	Switch a server outlet on or off

	Parameters:	dataDict – a dict holding two keys: ‘server’ key for the server’s name and an ‘obj’ key for the outlet’s name

	Returns:	the OpState of the test

	
ockle_client.ClientCalls.serversDependent(server)[source]

	Get a dict of servers that this server is dependent on

	Parameters:	server – The server to check for

	Returns:	a dict of servers that this server is dependent on

	
ockle_client.ClientCalls.setAutoControlStatus(dataDict)[source]

	Set the status of Auto Control

	Param :	dataDict: A dictionary with the field status which is either ‘on’ or ‘off’

	Returns:	A dict similar to ::func: getAutoControlStatus

	
ockle_client.ClientCalls.setINIFile(iniPath, iniDict)[source]

	Set an INI file from Ockle’s configuration

	Parameters:	
	iniPath – the path of the ini file starting from the ‘etc’ folder

	iniDict – a dict holding the structure of the ini file

	Returns:	A response from Ockle

	
ockle_client.ClientCalls.setServer(dataDict)[source]

	Set a server on or off

	Parameters:	dataDict – A dict with two keys, one with the key ‘server’ which holds the server name in its value, and another with the key ‘state’ where its value is wither ‘on’ or ‘off’

	Returns:	A dict with the key ‘status’ containing a string reply from Ockle

	
ockle_client.ClientCalls.switchControl(dataDict)[source]

	Switch a server control on or off

	Parameters:	dataDict – a dict holding three keys: ‘server’ key for the server’s name, an ‘obj’ key for the control’s name and the ‘state’ key with a string ‘on’ or ‘off’

	Returns:	the OpState of the control

	
ockle_client.ClientCalls.switchNetwork(dataDict)[source]

	A master command to turn all the servers on the network on or off

	Parameters:	dataDict – a dict with the key ‘state’ that has a string ‘true’ or ‘false’

	Returns:	a dict with the key ‘status’ with a string reply from Ockle

	
ockle_client.ClientCalls.switchOutlet(dataDict)[source]

	Switch a server outlet on or off

	Parameters:	dataDict – a dict holding three keys: ‘server’ key for the server’s name, an ‘obj’ key for the outlet’s name and the ‘state’ key with a string ‘on’ or ‘off’

	Returns:	the OpState of the outlet

Example usage

Here is a simple example on how to use the ockle_client module:

import webserver.ockle_client.ClientCalls as ockleClient
ockleClient.PORT = 8088
ockleClient.OCKLE_SERVER_HOSTNAME = 'localhost'

print ockleClient.listCommands()

 Copyright 2012, Guy Sheffer.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 	latest

 Server Objects and Object Generators

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Ockle 0.5.0 documentation

Server Objects and Object Generators

In Ockle, a server holds a collection of Server Objects which the Ockle’s Plugins interact with.
A server object instance is created from an Object Generator class. Currently there are three Object Generator are: PDUs, Controllers and Testers. Those generate the Outlet, control and test objects respectively.

	Power distribution units (PDUs) - Outlets
	Coding a new PDU type
	Example Dummy Outlet

	Example for an outlet INI Template File

	Controllers - Controls
	Coding a New Controller Type
	Example Dummy Control

	Example for a control INI Template File

	Testers - Tests
	Coding a New Tester Type
	Example Dummy Tester

	Example for a control INI Template File

Object Generators common tools

INI Template files

You can specify global parameters for the PDU, controllers and testers and specific parameters for each server outlet, control and test.

Object Generator parameters go in a section named after that object generator.
For example, PDUs have a [pdu] section.

Server Object parameters on in a section named after the Server Object, followed by the word Params.
For example an outlet will will have an [outletParams] section.

These template files follow Ockle’s INI Template file format .

 Copyright 2012, Guy Sheffer.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 	latest

 Power distribution units (PDUs) - Outlets

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Ockle 0.5.0 documentation

 	Server Objects and Object Generators

Power distribution units (PDUs) - Outlets

PDUs are object generators that create outlets for a server.
Outlets represent a physical power socket that that can switch the server’s power on or off. Outlet also have a data field that gets logged in the PluginLogger.

Coding a new PDU type

When creating a new one you should extend the class outlets.OutletTemplate.OutletTemplate .

The python file containing the class should be placed in the src/outlets package.

Here are the methods you should implement when writing a new PDU class:

	
class outlets.OutletTemplate.OutletTemplate(name, outletConfigDict={}, outletParams={})[source]

	Template for an outlet object that all other outlets extend

	Variables:	data – Holds a dict of the data from the outlet

	
_setOutletState(state)[source]

	To be implemented by the child, sets the outlet’s state

	Parameters:	state (bool) – The state to set

	
_getOutletState()[source]

	To be implemented by the child, sets the outlet’s state

	Returns:	The current outlet state

	
updateData()[source]

	To be Implemented in the child, updates the self.data variable

Example Dummy Outlet

Here is an example dummy outlet implementation

Example for an outlet INI Template File

Here is an INI template file from the Raritan PDU, located at src/config/conf_outlets/Raritan.ini:

 Copyright 2012, Guy Sheffer.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 	latest

 Controllers - Controls

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Ockle 0.5.0 documentation

 	Server Objects and Object Generators

Controllers - Controls

Controllers are object generators that create controls for a server.
Controls are a set of commands that can tell a server to switch itself off on the software level (before the outlets switch off its power). Controllers also have a data field that gets logged in the PluginLogger, enabling logging information from the servers.

Coding a New Controller Type

When creating a new controller type you should extend the class controller.ControllerTemplate.ControllerTemplate.

The python file containing the class should be placed in the src/controllers package.

Here are the methods you should implement when writing a new Controller class:

	
class controllers.ControllerTemplate.ControllerTemplate(name, controllerConfigDict={}, controllerParams={})[source]

	Template for a control object that all other controls extend

	Variables:	data – Holds a dict of the data from the control

	
_setControlState(state)[source]

	To be implemented by the child, sets the control’s state

	Parameters:	state (bool) – The state to set

	
_getControlState()[source]

	To be implemented by the child, sets the control’s state

	Returns:	The current control state

	
updateData()[source]

	To be Implemented in the child, updates the self.data variable

Example Dummy Control

Here is an example dummy outlet implementation

Example for a control INI Template File

Here is an INI template file from a control to send ssh commands to a server, located at src/config/conf_controllers/SSHController.ini:

 Copyright 2012, Guy Sheffer.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 	latest

 Testers - Tests

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Ockle 0.5.0 documentation

 	Server Objects and Object Generators

Testers - Tests

Testers are object generators that create tests for a server.
Tests are a set of commands that runs after a server has been switched on, to make sure its serving the network correctly.

Coding a New Tester Type

When creating a new tester type you should extend the class testers.TemplateTester.TemplateTester.

The python file containing the class should be placed in the src/testers package.

Here is the methods you should implement when writing a new Tester class:

	
class testers.TemplateTester.TemplateTester(name, testerConfigDict, testerParams)[source]

	
	
_test()[source]

	To be implemented by the child, runs the test

	Returns:	Return True if succeeded

Example Dummy Tester

Here is an example dummy outlet implementation

Example for a control INI Template File

Here is an INI template file from the dummy test above, which is placed in src/config/conf_testers/SSHController.ini:

 Copyright 2012, Guy Sheffer.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 	latest

 INI Template file format

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Ockle 0.5.0 documentation

INI Template file format

Note

INI Template file format is only accessible by developers, it should not be changed by users.

Ockle has various configuration directives that are set in a common INI Template file format.
By using these templates Ockle module developers simply specify what configuration variables their module has, and Ockle’s core would let the user edit them comfortably in the gui.

These files define how the INI configuration files should be written.

Available settings data types

INI Template files include the variable name as items, and a json formatted list with the type followed by a default variables.

Current types supported:

	Type
	Field
	Example

	string
	default
	[“string”,”yay”]

	int
	default
	[“int”,1]

	bool
	default
	[“bool”,true]

	intrange
	default, range
	[“intrange”,1,”1-8”]

	select *
	select disabled?
	[“select”,false]

	multilist *
	ordered? , sorted?, Url Pattern **
	[“multilist”,true,”~~name~~”]

* These require the mulichoice variable to be defined

** ~~name~~ string would be replaced by the multichoice’s value

 Copyright 2012, Guy Sheffer.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 	latest

 Future Work

 Navigation

 	
 index

 	
 modules |

 	
 previous |

 	Ockle 0.5.0 documentation

Future Work

What could be added:

	Add o